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ABSTRACT: We show that gel-phase lipid membranes
soften upon bending, leading to curvature localization and
a negative compressibility. Using simulations of two very
different lipid models to quantify shape and stress−strain
relation of buckled membranes, we demonstrate that gel
phase bilayers do not behave like Euler elastica and hence
are not well described by a quadratic Helfrich Hamil-
tonian, much unlike their fluid-phase counterparts. We
propose a theoretical framework which accounts for the
observed softening through an energy density that
smoothly crosses over from a quadratic to a linear
curvature dependence beyond a critical new scale −1.
This model captures both the shape and the stress−strain
relation for our two sets of simulations and permits the
extraction of bending moduli, which are found to be about
an order of magnitude larger than the corresponding fluid
phase values. We also find surprisingly large crossover
lengths , several times bigger than the bilayer thickness,
rendering the exotic elasticity of gel-phase membranes
more strongly pronounced than that of homogeneous
compressible sheets and artificial metamaterials. We
suggest that such membranes have unexpected potential
as nanoscale systems with striking materials characteristics.

Much effort has recently gone into synthesis and character-
izationof novelmaterialswith exotic properties, pertaining

for instance to their chemistry, optics, and mechanics.1−4 The
latter in particular plays adual role as both aprimary function anda
secondary constraint on design, processing, and structural
integrity. Since elasticity reveals its unique characteristics beyond
linear response,muchworkhas focusedonstability limits and large
deformations, and for both subjects buckling is the most widely
studied example.5−12 For instance, several systems have been
shown to exhibit curvature localization and negative compressi-
bility, properties that may exacerbate a material’s failure modes,
but which, if properly utilized, enable novel applications in
mechanical sensors and microactuators.8−12 These phenomena
havebeenobservedunder a variety of circumstances, ranging from
wide isotropic beams12 to floating elastica10,11 tometamaterials,12

but how the underlying microscopic characteristics lead to
dramatic large-scale properties remains puzzling. A better
understanding of this connection would permit exciting advances
in rational materials design and chemistry.
Here we demonstrate that lipid membranes in the gel phase

buckle discontinuously, as curvature softening leads to a negative
compressibility. The effect is more pronounced compared to

unstructured sheets and manifests at the nanoscale, far smaller
than for other materials. This phenomenon is very surprising,
given that fluid-phase membranes follow classical curvature
elasticity and buckle exactly like Euler elastica,13,14 as we also
confirm in more detail. Since the exotic behavior can be triggered
by cooling below the main phase transition, which in turn can be
tuned over a wide range by using suitable lipids or mixtures, lipid
membranes emerge as attractive model systems for exotic
elasticity and promising material candidates for switchable elastic
nano devices, especially given the vast information already
available concerning their structure and thermodynamics.
Before we discuss gel membrane elasticity, let us recall the

canonical starting point forfluidmembrane elasticity: theHelfrich
Hamiltonian.15 It models a membrane as a two-dimensional
surface equipped with the curvature energy density:

κ κ= − + ̅e K K K K K( , )
1
2

( )G 0
2
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where K and KG are total and Gaussian surface curvature,
respectively.16,17 Themean andGaussian curvaturemoduli, κ and
κ ̅ , as well as the spontaneous curvature K0 need to be either
calculated from more finely resolved theories or determined in
experiment or simulation. “Measuring the bending rigidity of gel-
phase membranes” presumes that such low-temperature bilayer
phases also follow a Hamiltonian of the form (eq 1), just with
different values for themoduli. We will show that this assumption
is critically incomplete, with significant quantitative implications
for the inferred material parameters.
The many simulation techniques for determining the rigidity κ

of fluid bilayers essentially divide into two classes: monitoring
passive fluctuations18−32 and imposing active deforma-
tions.13,14,33,34 The former exploit the fact that suitably chosen
fluctuation modes are inversely proportional to κ, while the latter
measure the force needed to bend a membrane, which is directly
proportional to κ. The passivemethods are currently more widely
used, but the inverse relation between rigidity and fluctuations
causes difficulties when working with gel phases: their moduli are
believed to exceed those of fluid bilayers by about an order of
magnitude,35−37 and hence the observed signal (a fluctuation) is a
lot harder to detect. In contrast, for active methods the signal (a
force) increases by that same factor. Measuring the elastic
response to active deformations appears to be themore promising
route for gel phases.
Before specifically discussing gel phases, let us briefly review the

main idea of buckling, as previously applied to the fluid case.13,14
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An incompressible membrane buckles if it is forced into a box of
cross-sectional area smaller than the equilibrium area of the
membrane. By choosing a strongly elongated rectangle as that
area, a single buckle develops along the extendeddirection, say the
x-axis. The buckle’s overall bending energy is the area integral of
theenergydensity (eq1),which isminimizedbya shapebelonging
to the class of planar Euler elastica.38 It can be expressed
analytically in terms of Jacobi elliptic functions and integrals.38,39

This equilibriumshapedependsonlyon the sizeof themembrane,
not on its rigidity, and hence comparing the predicted shape with
the observed one permits a parameter-free test of the theory. One
can further calculate the stress (or forceperunit length) f x required
to achieve a buckling strain γ = (L − Lx) /L, where Lx is the box-
length along the buckle’s undulation direction and L is the total
contour length of the membrane along the buckle:14
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This stress contains κ as the only fitting parameter and therefore
provides easy access to the mean curvature modulus.
We can apply the buckling method, as described so far, also to

gel-phase membranes, because the shape change is isometric, and
so the Gaussian curvature remains zero. We will use two different
lipid models: Cooke40,41 andMARTINI.42 The Cooke model is a
low-resolution coarse-grained implicit solvent model where each
lipid is represented by three particles; MARTINI is a highly
versatile medium-resolution explicit solvent coarse-grained
model, and we chose DMPC (10 particles) as the lipid. Both
models arewell discussed in the literature, andwewill leave further
details to the Supporting Information (SI). With this choice we
cover two different resolutions and both explicit and implicit
solvents. We deliberately forego atomistic modeling, since the
(substantial) equilibration issues are not ourmain focus; however,
we wish to stress that buckling is a viable protocol even for high-
resolution explicit-solvent models, as we have demonstrated for
thefluid case.14 For theCooke simulations,weused theESPResSo
package,43 and for the MARTINI simulations, we used
GROMACS 4.5.44 The Python toolkit MDAnalysis45 was also
used for further analysis. More details, including a discussion on
the difficulty to equilibrate gel-phase membranes, can be found in
the SI.
Figure 1 shows the stress−strain relation for the Cooke model

resulting fromsuchasetof simulations. It is clear that the results do
not match the prediction from eq 2 based on Helfrich theory, not
evenqualitatively: the stress decreases as strain increases, implying
a negative compressibility. And if we naıv̈ely fit the data, we obtain
anunrealistically small valueofκ, onlyabout three times larger than
in the fluid case. Hence, Helfrich theory appears not to properly
describe gel-phase membranes.
To trace down the origin of this discrepancy, we compare the

shapeof the gel buckles to theprediction fromHelfrich theory.We
project the particles closest to the pivotal plane of eachmonolayer
to the bilayer’s midplane and expand the result in a Fourier series
(see SI). For a Cooke buckle at γ = 7.7%, Figure 2 compares the
classical Euler shape (blue curve) with the observed one (red
circles). Again, theory disagreeswith simulation: curved regions at
the turningpoints aremorecurved than theEulerprediction,while
flat regions are flatter. The deviation appears small, but it is
systematic and does not occur for fluid buckles (see SI). It has
profound consequences, as we will now discuss.
The curvature localization revealed by our shape analysis

suggests that the energy penalty for high bending is lower than

Table 1. Properties of the Two Lipid Models

property Cooke MARTINI

lipid wc/σ = 1.6a DMPCb

beads/lipid 3 10
solvent none 1 bead = 4 H2O
Nlipids 1344 1170
P2(gel) /P2(fluid) 0.957/0.732 0.858/0.369
T 0.85ε/kB

a 265 K
L 54.2σ 432 Å
Ly 12.0σ 61.3 Å

aσ and ε are Lennard-Jones units. For the Cooke model, a good
approximate mapping of length is σ ≈ 11 Å. bDMPC = 1,2-
dimyristoyl-sn-glycero-3-phosphocholine, or (14:0)-PC.

Figure 1. Top: Buckling stress f x as a function of strain γ for the Cooke
model.The open circles are calculated directly from the stress tensor.The
filledcircles are calculatedby scaling fx̃withκ/

2,where fx̃and are inferred
from the shapes of each simulation and κ is taken from the measured
stresses by averaging over all simulations. The blue dashed line is the poor
fit to the Euler stress; the solid curve is our new prediction for f x(γ),
determined from the average value of fx̃ and . Its flanking 68% and 95%
confidence bands are based on resampling all data. Bottom: bending
rigidity κ derived from each simulation.

Figure2.Comparisonbetweensimulatedandcalculatedgelbuckle shape.
Top: average shape of aCookemodel buckle at γ= 7.7% (red circles); the
vertical axis is stretched approximately 3-fold for better visibility.Theblue
line is the predicted Euler buckle shape, the black line is the best fit based
on the energy density (3a), using as the fitting parameter. Bottom:
residuals between simulation and the two theories (samecoloring as top).
The rmsd from eq (S15) in the SI for the Euler buckle is 0.122σ, our
extended theory gives 0.015σ, nearly an order of magnitude smaller.
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what eq 1 assumes. An obvious way for capturing this effect is to
extend Helfrich theory by a quartic term. Softening at larger
curvaturesmeans it must have a negative prefactor, but this would
result in an energy density that is not bounded below.We need to
regularize such a theory by adding even higher order terms, ideally
without introducingmorearbitraryparameters.Wepropose touse
a functional form that crosses over from a quadratic to a linear
dependence at some curvature scale −1, thus staying both
bounded below and convex:

κ̃ = + −−e K K( ) [ 1 1]2 2 2 (3a)
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This effectively amounts to a specific choice for regularization.
Since for sufficiently small curvature postquartic terms will matter
little, all we require is that they introduce neither unnecessary
structure nor undue mathematical complication, and both holds
for our choice. For example, some empirical suggestions for
capturing curvature softening let e(K) cross over into a plateau
(insteadof growing further, even thoughonly linearly); thiswill by
construction permit kinking once the curvature exceeds some
critical threshold.46,47

Wedropped theGaussian term κ ̅KG in our extended theory (eq
3a),becausewestrive tounderstandplanarbuckles, forwhichKG=
0, and so we can ignore it, along with two other possible quartic
terms, namely K2KG and KG

2. However, there exists yet another
term, the curvature gradient (∇K)2, which does not vanish for
buckles and is also of order length−4. Softening would again
correspond to anegative prefactor, but this time regularization can
not be achieved as easily as in theK4 case. Moreover, this gradient
term would increase the order of the resulting Euler−Lagrange
differential equationby2, rendering themathematics substantially
more onerous. While neither of these troubles imply that such a
term does not exist, we will see that it is not needed to obtain
satisfactory agreement between simulation and theory. We will
therefore ignore the gradient term, if only for pragmatic reasons.
To predict a buckle’s shape we need to solve the Euler−

Lagrange equation corresponding to the functional (eq 3a). We
describe the shape through the angle ψ(s) of the profile’s tangent
vector t ⃗with respect to the horizontal as a function of arclength s,
such thatK=−ψ′≡−dψ/ds.13,14 Stress conservation along the x-
axis again leads to a first integral.14,48 Choosing the origin of s such
that ψ(0) = ψi, the remaining quadrature takes the form:

∫ ψ ψ ψ= − ̃ − −
ψ

ψ
− −s fd {[1 (cos cos )] 1}

s

x

( )

i
2 1/2

i (4)

where the parameter fx̃= f x
2/κ≡ 2/λ2 is a dimensionlessmeasure

of the stress confining the buckle. The spatial coordinates can be
determined by integrating the components of the tangent vector t ⃗
= (x′(s), y′(s)) = (cos ψ, sin ψ).
The same series-inversion techniques we used for the fluid

case14 lead to the stress−strain relation, valid for small strain.
Defining the dimensionless parameter δ = 2π /L, we obtain
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which reduces to eq 2 in the limit δ→ 0. Unfortunately, once we
have δ2 > 1/3, this series no longer converges for all γ, but in that
case we can still integrate the quadrature numerically.

How well does our modified theory describe the gel-phase
simulations?We begin with the shape comparison. The black line
in Figure 2 shows that the extended theory (eq 3a) captures the
simulated shape muchmore accurately than the Euler buckle did.
We can quantify this by the shape’s root-mean-square deviation
(rmsd). For instance, the Euler buckle in Figure 2 gives an rmsd of
0.122 σ, while the rmsd drops by almost an order of magnitude to
0.015 σ for our extended theory (eq 3a). This is also visually
illustrated by the residuals in the bottom part of Figure 2.
Next, the black curve in Figure 1 shows the prediction for the

stress−strain relation, f x(γ,⟨δ⟩), taking the average value for (and
hence ⟨δ⟩ = 2π⟨ ⟩/L) extracted from all shapes and using the best
fit for κ over the entire set of data. Unlike eq 2, our new theory
captures the observed negative compressibility; this equally holds
for the MARTINI simulations, as documented in the SI. Eq 5
predicts that the compressibility will turn negative once δ > 1/ 3
≈ 0.58. We find δ = 2.9 and 2.0 for Cooke and MARTINI,
respectively, far beyond critical.
The material parameters derived from our fits are summarized

inTable 2. For bothmodels κ/kBT is almost anorder ofmagnitude
larger in the gel phase than in the fluid phase, in better agreement
with expectation.35−37 The seemingly minor shape deviation
between the gel-phase simulation and the Euler buckle prediction
profoundlyaffects the inferredmoduli.Moreover, inbothcases the
deduced crossover length is significantly larger than the bilayer
thickness w, explaining why the higher order correction is
noticeable even at very weak buckling. For instance, the buckle
at γ= 7.7% in Figure 2 has a smallest curvature radius ofR≈ 0.28L
≈ 167 Å≈ 0.6 . Notice finally that the two models have different
crossover lengths , with the value for the Cooke model being
about twice thatofMARTINIDMPC.This isnot surprising, given
how different themodels are, but it shows that the extent to which
deviations fromHelfrichelasticity occurwill dependonthemodel,
and surely also on the lipid.
Oshri and Diamant have recently shown that our extended

curvature functional (eq 3a) arises naturally when describing
homogeneous thin compressible elastics.49 Their framework
(combined with thin plate theory48,50) predicts that the crossover
length is very small, = w/ 48 , implying that a negative
compressibility only occurs for unrealistic width-to-length ratios
w/L>2/π≈64%, forwhich thin-plate theory isof courseno longer
valid. Accounting for finite-width corrections, Coulais et al. show,
using both experiments and numerics, that this critical ratio drops
to 12%;12 in experiments with internally patterned metamaterial
beams they can get as low as 5%.12 Compared to this, our Cooke
and MARTINI models exhibit the even smaller critical aspect
ratios of 1.8% and 2.6%, a more striking elastic response than
artificially designed metamaterials. This suggests that real gel-
phase membranes are promising candidates for exotic elastic
properties.Given that amembrane’smainphase transition is easily

Table 2.Moduli,Crossover Length, AndBilayerWidth forOur
Simulations

model κfl [kBTfl]
a,b κgel [kBTgel]

b (Å) w (Å)c

Cooke 12.8(4) 96(5) 275(22) 52.9
MARTINI 29(1) 230(10) 139(5) 39.0

aValues from Hu et al.14 bTemperature differs between fluid and gel
phase: for the Cooke model, Tfl = 1.1 ε/kB for the fluid and Tgel = 0.85
ε/kB for the gel phase. For MARTINI DMPC, Tfl = 300 K and Tgel =
265 K. cBilayer width w is measured as the distance between head
beads and phosphate beads in opposing planes for Cooke and
MARTINI, respectively.
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tunable by lipid type and composition and that we have decades
worth of experimental, computational, and theoretical insight into
these systems, gel phases are nearly ideal model systems and test
beds for probing, understanding, and applying exotic elasticity.
It is remarkable that the membranes we simulated, which were

neither small nor exceptionally strongly bent, are well past the
discontinuous buckling threshold. We therefore expect most
simulationsof curvedgelphases toexperience curvature softening,
and so analyzing them on the quadratic level may be insufficient.
What is more, the discovery of K4 corrections feeds the suspicion
that the other quartic terms, K2KG, KG

2, and (∇K)2, come with
moduli of comparable magnitude, but our buckling protocol is
insensitive to the first two and cannot easily disentangle the third
gradient term from theK4 term.Hence, we likely have no accurate
elastic theory to describe prominent applications of gel-phase
membranes, e.g., theiruseas temperature-sensitive liposomaldrug
carriers.51−53 Developing such a theory will be a necessary step
toward exploiting the potential of these phases more systemati-
cally. For instance, understanding the role of a bilayer’s
microstructure (such as order parameter, tilt, and prestress)
would help to predict how analogous but artificial materials (such
as diblock copolymer membranes) need to be designed to mimic
or even amplify such exotic elastic behavior.
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